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ABSTRACT
Tabular data is the most common format to publish and exchange
structured data online. A clear example is the growing number of
open data portals published by public administrations. However,
exploitation of these data sources is currently limited to technical
people able to programmatically manipulate and digest such data.
As an alternative, we propose the use of chatbots to offer a conversa-
tional interface to facilitate the exploration of tabular data sources,
including support for data analytics questions that are responded
via charts rendered by the chatbot. Moreover, our chatbots are
automatically generated from the data source itself thanks to the
instantiation of a configurable collection of conversation patterns
matched to the chatbot intents and entities.

CCS CONCEPTS
•Human-centered computing; • Software and its engineering
→ Domain specific languages; • Information systems→ Ex-
traction, transformation and loading; •Computingmethodologies
→ Natural language generation; Natural language processing;
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1 INTRODUCTION
Tabular data, consisting of samples (rows) and features (columns),
is a prevalent data type in digital technology, increasingly used in
open data published by public administrations1. Despite its wide
use, there’s a significant lack of tools that allow non-technical users
to easily explore this data, which limits the public advantage from
1Just the EU portal https://data.europa.eu/ registers over 1.5M datasets
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open data initiatives. Conversational User Interfaces (CUIs) such as
chatbots and voicebots could improve the accessibility of tabular
data [3]. Until now, chatbots for tabular data are either manually
created (an option that is not scalable) or completely relying on
general purpose LLMs (with limited capacity, especially for larger
datasets, and with a risk of generating wrong answers, see Section
5).

This paper introduces a scalable, no-code tool that automatically
creates chatbots for tabular data based on a schema inferred from
the data itself. Such schema can be optionally enhanced by the user,
or automatically with the help of a Large Language Models (LLMs)
if needed. Our generated chatbots can handle a broad range of user
intents and incorporate LLMs for generating responses through
English-to-SQL translations when the intent corresponding to the
user question is unrecognized. The entire setup is managed on our
DataBot platform2, which supports data import, chatbot manage-
ment, and interactions via text or voice, providing outputs in tables
or graph formats. This innovative approach not only simplifies the
exploration and usage of tabular data for users without technical ex-
pertise but also offers organizations a convenient, effective method
to enhance the value and utility of their data assets.

2 CHATBOT ARCHITECTURE
The architecture we propose for our generated chatbots is depicted
in Figure 1. At the core of the bot, there is an intent matching
process aimed at identifying the user questions and their param-
eters. If the bot is able to match the intent and recognize all the
mandatory parameters for that specific intent, it will transition to
the appropriate state in charge of generating the answer for that
particular question. If not, a fallback mechanism is triggered and
an English-to-SQL translation is done by a LLM to obtain the best
possible tabular answer. Note also that the bot is prepared to be
multilingual with minimal work.

2.1 Execution Path for Recognized Intents
Once the chatbot knows the user’s intent, it starts the process of
generating the answer. This overall process is the same in all intents,
though its implementation varies on each intent.

The first step is to analyze the intent parameters (entities). If the
extracted parameters are OK (there are no missing parameters or
wrong value types) the bot moves to the next step of the workflow.
When the bot finds confusing or missing parameters, it triggers

2https://github.com/BESSER-PEARL/databot
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Figure 1: Diagram of the architecture of the generated chat-
bots.

an interaction with the user to clarify the doubts. If the problem
persists, it moves to the fallback state.

When all parameters are OK, the bot proceeds with the answer
generation. At this point, the bot knows exactly what kind of ques-
tion the user is asking (based on the recognized intent) and the
variables involved in the question (the recognized parameters). The
bot can generate 2 kinds of answers: tables or charts (depending
on the type of information the user asks for, either implicitly or
explicitly). In both cases, the bot behaves in a deterministic way,
building the right SQL queries based on the detected information
and reporting it in the desired output format (e.g., generating a pie
chart and displaying it in the interactive GUI of the bot).

2.2 LLM Fallback Path
Despite the bot’s best efforts, sometimes it may fail to understand
the user’s question, either because it is not one of the questions
the tool foresaw in the generation or because it is too far from the
training sentences. When this happens, the bot cannot give an exact
answer on its own. At this point, it could just tell the user that it
was unable to understand the question, but we try to be more useful
and add to the bot a powerful, optional and configurable fallback
mechanism.

The fallback relies on a LLM to automatically translate the user’s
query to an equivalent SQL statement. This approach does not
always provide a perfect translation, and therefore, it may generate
a wrong answer but it is worth trying as our experiments suggest
that users prefer an approximate result (even if potentially wrong)
than a plain “sorry” message. Note that the bot always warns the
user when answering via this fallback strategy and provides the SQL
suggested by the LLM to the user for explainability purposes. The
quality of the answers will depend on the selected LLM. As of today,
we obtain the best results with GPT-4 [11]. When triggering the
fallback mechanism, the bot will: 1 - Send a prompt to the chosen
LLM with instructions on the task it must perform (translation
of a query in English into an equivalent SQL query) and the data
schema in JSON format as additional context, 2 - Receive the LLM-
generated SQL query and run it on the bot’s dataset, and 3 - Display
the tabular answer together with the SQL query used to obtain it.

3 AUTOMATED CHATBOT GENERATION
PROCESS

Figure 2 shows the workflow our tool follows to generate the bots
from an initial tabular data source, depicted as a CSV file in the
Figure. The generated bots will follow the architecture explained in
the previous section. The process is fully automatic, although the

data owner can optionally participate in the data schema enrich-
ment step to generate more powerful bots. This enrichment can
also be automated by using LLMs. The next subsections describe in
more detail each step.

Figure 2: The chatbot generation process.

3.1 Data Schema Inference
To automatically create a bot, we only need one ingredient: a tabular
dataset. The dataset must follow a 2D structure, being composed by
columns (attributes) and rows (records). Therefore, valid formats
for this approach include CSV or XLSX, although other formats
such as JSON or XML can be supported as long as they follow a
tabular-like structure (e.g., nested attributes are not supported). The
size of the dataset may impact the bot performance. The dataset
queries will be done with Python’s Pandas library, so the platform
scalability strongly relies on Pandas’ scalability capabilities (e.g., to
execute several bots on top of gigabytes of data, a certain level of
computational power and memory will be necessary to run them)

From the structure of the dataset we will gather the list of
columns/fields (with their names). From the analysis of the dataset
content, we will infer the data type of each field (numeric, textual,
date-time,...) and its diversity (number of different values present
in that specific column). Based on a predefined (but configurable)
diversity threshold, we automatically classify as categorical those
fields under the threshold. Categorical fields are implemented as an
additional bot entity so that users can directly refer to their values
in any question. All this information conforms the metadata the
bot will be trained on.

At this point, the chatbot can be already generated. Thanks to
the schema inferred from the data source, the chatbot will be able
to recognise certain kinds of questions relying on the knowledge
extracted from the data (e.g., “Which is the maximum value in
X?”, where X would correspond to one of the detected numeric
columns’). Think of fields and rows as input and output parameters
of the user’s questions the bot must be able to answer, e.g., users can
ask for the value in field X of rows satisfying a certain condition in
field Y.

3.2 Data Schema Enhancement
Even though chatbots can be automatically created, they could
have limited success for some data sources. This could happen, for
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Figure 3: Screenshot of the admin User Interface, where bots can be executed and the data schemas can be enhanced.

instance, if the user uses words very distant to those present in the
data schema. Another common problem is the semantics of fields.
Some fields may compose an address (street, number, city, etc.) or
a date (year, month, day, hour). This is something users could ask
about, but they are probably not aware of the internal structure of
the dataset and could ask about fields that actually do not explicitly
exist as such.

Our bots’ philosophy is based on being sure in the answers they
provide. Therefore, increasing the bot comprehension or permis-
sion to understand what is unknown could derive in a much higher
failure rate. This can be considered a limitation but it is also as a
safety mechanism. However, we provide the user with the neces-
sary tools to optionally enhance their bots’ capabilities by enriching
the automatically inferred data schema. As an example, the schema
could be enriched by adding synonyms or creating new virtual
columns (result of merging fields). These improvements can be
done either manually by the bot creator or using a LLM to automa-
tize the process, as shown in Figure 3. The data schema model is
designed to be easily extensible to add different knowledge compo-
nents. Therefore, further work on this matter to augment the bot
comprehension of the data can be done in the future.

3.3 Bot Generation
The bot generation phase takes the (potentially enriched) data
schema and instantiates a set of predefined conversation patterns,
gathered, improved and extended via several experiments with
users, to generate the actual set of questions the bot will be trained
on (i.e., the intents’ training sentences). The training phase of the
bot will vary depending on the chosen intent classifier component.
The main idea behind this is that this component learns the kind
of questions it will receive by seeing example (training) annotated

sentences. In NLP, this problem is known as Text Classification.
On top of this core component, the generator will add the fallback
mechanism and other auxiliary conversations and components to
create a fully functional bot.

3.3.1 Intents. The generated bots will contain a set of predefined
intents, whose training sentences will be generated from a template
bundle and completed with the data schema information3. These
intents have been designed to suit as many datasets as possible and
to match any dataset query that involves the columns and their
values as embedded parameters. These queries mainly (but not
only) include any SQL ‘select’ statement (in an equivalent natural
language form), column comparisons, column or value frequencies,
etc., regarding the tabular answer intents, and histogram, boxplot,
bar, pie or line chart generation (among others) regarding the chart
answer intents.

The advantage of this conversational model is that it is easily
extensible with further intents allowing the integration of new bot
capabilities by just defining the new intent and its proper response.

3.3.2 Entities. The bots contain a set of entities used to recognize
relevant elements within intents through their parameters. These
entities consist of a set of values, each of them containing an op-
tional set of synonyms. In our context, the parameters the bots
must recognize are mainly elements relative to the data they serve,
like field names or values. In other words, their content depends on
the data content. There are other data-independent entities such as
operators (e.g., ‘maximum’ or ‘minimum’) or row names (e.g., ‘row’
or ‘entry’, though the user can add domain-specific row names, like
‘person’ or ‘employee’)

3https://github.com/BESSER-PEARL/databot/blob/main/src/app/bot/library/intents.
json
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Figure 4: Screenshot of the interactive dashboard showing a graphic answer (a histogram) generated by the bot.

3.4 Using the Generated Bots
Once admin users are ready to generate a chatbot, they can go
ahead just by pressing the Train & Run buttons to (locally) deploy
the bot. It will be available in the playground tab of the platform.
The playground is the UI for the chatbot end-user (e.g., the citizen).
It offers an interactive dashboard with a chat box on the left side
of the canvas, together with a text input box and a voice input
button. On the right side, there is the dashboard itself, composed of
a set of tabs aimed at organizing the chatbot-generated content and
configuration options. It is also possible to create filters, restricting
the search space of the bot when generating an answer (e.g., filter
by gender, before some date or with some numeric field lower than
a threshold). Figures 4 and 5 show two different interactions with a
chatbot that generated graphical and tabular answers, respectively.

4 TOOL IMPLEMENTATION
All the tool components are written in Python. The UI relies on
Streamlit, a Python library for GUI development. The generated
chatbots rely on the BESSER Bot Framework4, a Python open-
source bot development tool for its runtime execution. All the
data management is performed with Pandas, the de facto Python
library for this type of task. Finally, for all the LLM-based tasks
(data schema enhancement, intent classification and English-to-
SQL fallback) we rely on OpenAI’s GPT-4 through its API. All the
source code of the DataBot platform is freely available on GitHub.

4https://github.com/BESSER-PEARL/BESSER-Bot-Framework

The design of the conversation patterns has been the result
of three preliminary experiments with datasets from the city of
Barcelona5, the Catalan Government 6 and the LIS Cross-National
Data Center in Luxembourg7, where we deployed a chatbot for
each dataset and gathered the user interactions (both from the
data owners and the citizens) to refine the intents the bots should
recognize.

5 RELATEDWORK
In this section, we compare our approach with other works focusing
on the exploration and exploitation of tabular data by non-technical
people.

A first group of works (e.g., Socrata8) focuses on the generation
of charts and interactive dashboards [17] to help users filter and
view the data they want. However, while really useful to see trends
and global data perspectives, these works cannot be used to answer
concrete adhoc questions on specific aspects of the data.

Other approaches opt for a direct English-to-SQL translation
when querying tabular data, such as [1, 10, 14]. The major concern
with these “uncontrolled” translations is that they can generate
wrong queries and therefore come up with wrong factual answers.
This latter issue is also the main concern with generative chatbots

5https://opendata-ajuntament.barcelona.cat/data/en/dataset/carrecs-electes-
comissionats-i-gerents
6https://dadesobertes.seu-e.cat/dataset/ge-p-pressupostos-per-programes-detallat
7https://www.lisdatacenter.org/wp-content/uploads/files/access-key-workbook.xlsx
8https://dev.socrata.com/
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Figure 5: Screenshot of the interactive dashboard showing a tabular answer generated by the bot through the fallbackmechanism
powered by GPT-4. On the top-right side, there is an information box indicating that the displayed answer has been obtained
after running an AI-generated SQL statement, and the actual SQL is also shown.

based on LLMs that could also be used to chat with the citizens.
They tend to “hallucinate” and invent facts, which is something
too risky for a public-facing chatbot, especially for a government
administration [15].

More similar to our efforts, a couple of Proof of Concepts of
intent-based chatbots used for open data have been published [4,
13]. Both bots were manually created. This is in contrast with our
approach where bots are automatically generated. An exception is
[5] where the bot generation is semi-automated but it requires a
mandatory and extensive annotation process while we focus more
on a scalable approach able to generate chatbots with no human
intervention if so desired. Generation of chatbots from other types
of data sources like APIs [7, 16], web pages [6], knowledge graphs
[2] or even software designs [12] has also been explored and some
of their ideas could be exploited as well for tabular data. However,
we did not find any existing solution for automatic generation of

intent-based chatbots from tabular datasets that we could compare
with this work.

Another approach being widely used to query data with LLMs is
Retrieval-Augmented Generation (RAG) [9]. While being useful for
unstructured data sources like plain text, RAG has some limitations
to query tabular data. Some queries may need to retrieve an entire
column (e.g., to sum all the values), and RAG’smethodology consists
of selecting relevant parts of the data to send them to a LLM as
context so it can easily find the answer. This is not the best solution
for tabular data since it is not scalable. Furthermore, LLMs still can
suffer hallucinations.

To sum up, we believe our approach proposes a novel combi-
nation of strategies to mix the best of both worlds (intent-based
and LLM-based chatbots) and opens the door to a more massive
use of chatbots for tabular data thanks to our automatic generation
strategy.
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6 CONCLUSIONS AND FURTHERWORK
We have presented a new tool to automatically generate chatbots
from tabular data sources to help non-technical users explore this
type of data. This is especially useful in the current trend towards
more transparency and openness in the public administration, with
more and more open data sources released each day. Our chatbots
encode a significant number of potential questions users may want
to ask the data. Such questions are automatically generated based
on an initial analysis of the structure and content of the data source.

As further work, we plan to enrich the training of the chatbots
with the use of ontologies. The idea would be to map the data
schema to ontological concepts to be able to consider more seman-
tic information in the training. We also plan to extend the set of
conversation patterns including questions on the validity, origin
and possible biases of the data [8].
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